// This shader is the minimum needed to allow the terrain to function, without any texturing. shader_type spatial; render_mode blend_mix,depth_draw_opaque,cull_back,diffuse_burley,specular_schlick_ggx,skip_vertex_transform; // Private uniforms uniform float _region_size = 1024.0; uniform float _region_texel_size = 0.0009765625; // = 1/1024 uniform float _vertex_spacing = 1.0; uniform float _vertex_density = 1.0; // = 1/_vertex_spacing uniform int _region_map_size = 32; uniform int _region_map[1024]; uniform vec2 _region_locations[1024]; uniform sampler2DArray _height_maps : repeat_disable; uniform usampler2DArray _control_maps : repeat_disable; uniform sampler2DArray _color_maps : source_color, filter_linear_mipmap_anisotropic, repeat_disable; uniform sampler2DArray _texture_array_albedo : source_color, filter_linear_mipmap_anisotropic, repeat_enable; uniform sampler2DArray _texture_array_normal : hint_normal, filter_linear_mipmap_anisotropic, repeat_enable; uniform sampler2D noise_texture : source_color, filter_linear_mipmap_anisotropic, repeat_enable; uniform float _texture_uv_scale_array[32]; uniform float _texture_detile_array[32]; uniform vec4 _texture_color_array[32]; uniform uint _background_mode = 1u; // NONE = 0, FLAT = 1, NOISE = 2 uniform uint _mouse_layer = 0x80000000u; // Layer 32 // Public uniforms uniform float vertex_normals_distance : hint_range(0, 1024) = 128.0; // Varyings & Types varying flat vec3 v_vertex; // World coordinate vertex location varying flat vec3 v_camera_pos; varying float v_vertex_xz_dist; varying flat ivec3 v_region; varying flat vec2 v_uv_offset; varying flat vec2 v_uv2_offset; varying vec3 v_normal; varying float v_region_border_mask; //////////////////////// // Vertex //////////////////////// // Takes in UV world space coordinates, returns ivec3 with: // XY: (0 to _region_size) coordinates within a region // Z: layer index used for texturearrays, -1 if not in a region ivec3 get_region_uv(const vec2 uv) { ivec2 pos = ivec2(floor(uv * _region_texel_size)) + (_region_map_size / 2); int bounds = int(uint(pos.x | pos.y) < uint(_region_map_size)); int layer_index = _region_map[ pos.y * _region_map_size + pos.x ] * bounds - 1; return ivec3(ivec2(mod(uv,_region_size)), layer_index); } // Takes in UV2 region space coordinates, returns vec3 with: // XY: (0 to 1) coordinates within a region // Z: layer index used for texturearrays, -1 if not in a region vec3 get_region_uv2(const vec2 uv2) { // Remove Texel Offset to ensure correct region index. ivec2 pos = ivec2(floor(uv2 - vec2(_region_texel_size * 0.5))) + (_region_map_size / 2); int bounds = int(uint(pos.x | pos.y) < uint(_region_map_size)); int layer_index = _region_map[ pos.y * _region_map_size + pos.x ] * bounds - 1; return vec3(uv2 - _region_locations[layer_index], float(layer_index)); } // 1 lookup float get_height(vec2 uv) { highp float height = 0.0; vec3 region = get_region_uv2(uv); if (region.z >= 0.) { height = texture(_height_maps, region).r; } return height; } void vertex() { // Get camera pos in world vertex coords v_camera_pos = INV_VIEW_MATRIX[3].xyz; // Get vertex of flat plane in world coordinates and set world UV v_vertex = (MODEL_MATRIX * vec4(VERTEX, 1.0)).xyz; // Camera distance to vertex on flat plane v_vertex_xz_dist = length(v_vertex.xz - v_camera_pos.xz); // UV coordinates in world space. Values are 0 to _region_size within regions UV = round(v_vertex.xz * _vertex_density); // UV coordinates in region space + texel offset. Values are 0 to 1 within regions UV2 = fma(UV, vec2(_region_texel_size), vec2(0.5 * _region_texel_size)); // Discard vertices for Holes. 1 lookup v_region = get_region_uv(UV); uint control = texelFetch(_control_maps, v_region, 0).r; bool hole = bool(control >>2u & 0x1u); // Show holes to all cameras except mouse camera (on exactly 1 layer) if ( !(CAMERA_VISIBLE_LAYERS == _mouse_layer) && (hole || (_background_mode == 0u && (get_region_uv(UV - _region_texel_size) & v_region).z < 0))) { VERTEX.x = 0. / 0.; } else { // Set final vertex height & calculate vertex normals. 3 lookups. VERTEX.y = get_height(UV2); v_vertex.y = VERTEX.y; v_normal = vec3( v_vertex.y - get_height(UV2 + vec2(_region_texel_size, 0)), _vertex_spacing, v_vertex.y - get_height(UV2 + vec2(0, _region_texel_size)) ); // Due to a bug caused by the GPUs linear interpolation across edges of region maps, // mask region edges and use vertex normals only across region boundaries. v_region_border_mask = mod(UV.x + 2.5, _region_size) - fract(UV.x) < 5.0 || mod(UV.y + 2.5, _region_size) - fract(UV.y) < 5.0 ? 1. : 0.; } // Transform UVs to local to avoid poor precision during varying interpolation. v_uv_offset = MODEL_MATRIX[3].xz * _vertex_density; UV -= v_uv_offset; v_uv2_offset = v_uv_offset * _region_texel_size; UV2 -= v_uv2_offset; // Convert model space to view space w/ skip_vertex_transform render mode VERTEX = (MODEL_MATRIX * vec4(VERTEX, 1.0)).xyz; VERTEX = (VIEW_MATRIX * vec4(VERTEX, 1.0)).xyz; NORMAL = normalize((MODELVIEW_MATRIX * vec4(NORMAL, 0.0)).xyz); BINORMAL = normalize((MODELVIEW_MATRIX * vec4(BINORMAL, 0.0)).xyz); TANGENT = normalize((MODELVIEW_MATRIX * vec4(TANGENT, 0.0)).xyz); } //////////////////////// // Fragment //////////////////////// // 0 - 3 lookups vec3 get_normal(vec2 uv, out vec3 tangent, out vec3 binormal) { float u, v, height; vec3 normal; // Use vertex normals within radius of vertex_normals_distance, and along region borders. if (v_region_border_mask > 0.5 || v_vertex_xz_dist < vertex_normals_distance) { normal = normalize(v_normal); } else { height = get_height(uv); u = height - get_height(uv + vec2(_region_texel_size, 0)); v = height - get_height(uv + vec2(0, _region_texel_size)); normal = normalize(vec3(u, _vertex_spacing, v)); } tangent = cross(normal, vec3(0, 0, 1)); binormal = cross(normal, tangent); return normal; } void fragment() { // Recover UVs vec2 uv = UV + v_uv_offset; vec2 uv2 = UV2 + v_uv2_offset; // Calculate Terrain Normals. 4 lookups vec3 w_tangent, w_binormal; vec3 w_normal = get_normal(uv2, w_tangent, w_binormal); NORMAL = mat3(VIEW_MATRIX) * w_normal; TANGENT = mat3(VIEW_MATRIX) * w_tangent; BINORMAL = mat3(VIEW_MATRIX) * w_binormal; // Apply PBR ALBEDO=vec3(.2); }